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The hydrophobic amino acids that make up the core of a protein can be expected to be closer 
together than the rest of the residues in the molecule and are likely to remain conserved during 
evolution due to their important role. In the present study, a general theoretical framework is 
provided for estimating interresidue distances from residue hydrophobicity and conservation 
deduced from multiple alignments. While the accurate prediction of individual distances by sta- 
tistical procedures is theoretically impossible, the method is able to match the distribution of 
predicted distances to a prescribed distribution with good accuracy. 

1. In t roduc t ion  

The three-dimensional conformation of a protein can be deduced from a set of  
interresidue distances by various methods collectively known as Distance Geom- 
etry techniques [1]. These procedures rely on distance constraints which are 
obtained from experimental data such as NOE distance estimates or from general 
stereochemical considerations. In the majority of cases, however, the scarcity of 
reliable distance data constitutes a serious obstacle and may render the whole 
approach unfeasible. Therefore, the prediction of interresidue distances is of  con- 
siderable theoretical as well as practical importance. 

In the present study we describe a prediction method that is based on the hydro- 
phobic effect, one of the key factors of protein structure formation. In qualitative 
geometric terms, the hydrophobic effect can be regarded as the tendency of hydro- 
phobic amino acid side chains to cluster together within the core of a folded protein 
molecule. Therefore, hydrophobic amino acids in the core can be expected to be clo- 
ser together than the rest of the residues in the protein molecule. Also, the hydro- 
phobic amino acids which make up the hydrophobic core are likely to remain 
conserved during evolution due to their important role, and could be detected by 
sensitive multiple alignment techniques [2]. By combining these two factors, our 
approach attempts the prediction of interresidue distances as a function of average 
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residue hydrophobicity and conservation. The transform function that maps 
hydrophobicity and conservation values to distance estimates is determined in such 
a way that the distribution of the resulting estimates matches a predetermined dis- 
tance distribution. 

2. Me thods  

2.1. DISTANCE ESTIMATION FROM MULTIPLE ALIGNMENTS 

The Ca-Ca  distances between hydrophobic residues in proteins tend to be com- 
paratively small, due to the hydrophobic effect that leads to the formation of a bur- 
ied hydrophobic core inside the molecule. When the sequences of several related 
proteins with presumably similar three-dimensional structure are available, the 
alignment of these sequences can highlight the structurally important amino acids 
as these usually occupy conserved positions. To quantify this effect, a score was 
introduced that gave high values for conserved and hydrophobic amino acid pairs. 
A transform function was then used to convert these score values into pairwise dis- 
tance estimates so that their distribution matched a theoretical or observed interre- 
sidue distance distribution. 

2.1.1. The hydrophobicpacking score 
The conservation gi at the ith position of an alignment of N sequences was meas- 

ured by an unweighed average of the pairwise similarity scores of all amino acids 
in the position: 

2 N-1 N 
1)Zj=I Z M(Ri j ,  Rik) ,  (1) 

gi - N (  N _ k=j+l 

where Rij is the type of the amino acid in the j th  sequence in alignment position i 
and M(-,-) is an entry in an amino acid similarity matrix [3]. The similarity matrix 
was scaled so that all entries were i> 0 by subtracting the smallest entry from all 
the others, and gaps were skipped in the summation. For a single sequence (N = 1) 
all gi values were set to 1. The conservation value was normalised by dividing it by 
the maximal score encountered among the amino acid pairs: 

gi 
ci = m a x j < k M (  Riy, Rik  ) ' (2) 

ensuring that 0 ~< ci ~< 1. This measure gave 0 for positions which contained only 
one amino acid and N - 1 gaps, while totally conserved positions made up exclu- 
sively of one kind of amino acid and no gaps gave ci = 1. Following [4], thepairwise 
hydrophobicpacking score was then defined as 

hij = cihi a t- cjhj  , (3) 
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where ci is the conservation and hi is the average Levitt hydrophobicity [5] of the 
amino acids in the ith sequential position. 

2.1.2. Converting hydrophobic packing scores into expected distances 
The hydrophobic packing score gave a high value for conserved hydrophobic 

pairs while the expected distances for these should be low. Consequently, a mono- 
tonically decreasing transform function, depending on a parameter vector 
P = (Pl,P2,...) was needed that converted the hydrophobic scores (h/j) into 
expected distances (d/j): 

d U = T(hij,P). (4) 

[6] used the transform function 

Told( h,p ) = Pl h~ p2 - P3, (5) 

in which the negative exponent -P2 ensured the inversion of the measure. However, 
this function had the undesirable property of having a discontinuity at h --- 0. Con- 
sequently, an alternative formula 

Znew(h,p) = -plh~i f + p3 (6) 

was also tested which is continuous over h ~> 0. The parameter estimation was con- 
strained by the requirement that all three parameters should be positive for both 
functions. 

2.2. ESTIMATION OF THE PARAMETERS OF THE TRANSFORM FUNCTION 

The parameters in the transform function had to be adjusted so that the distribu- 
tion of the expected distances should match a prescribed distribution of Ca-Ca dis- 
tances. The most straightforward approach would have been to apply the 
transform function to all hydrophobic scores, calculate the distribution of the 
expected distances and evaluate the fit. However, this procedure should have been 
repeated several times in each cycle of the nonlinear parameter estimation algo- 
rithm, which, given the large number (usually at least 104) of the packing scores, 
would have resulted in unacceptably long execution times. 

Instead of this "brute force" approach, a simpler procedure was chosen. Since 
the hydrophobic packing scores h/j were mapped to the expected distances d/j by the 
transform function T(h,p) (eq. (4)), the relationship between the distribution of a 
random variable and the distribution of its function (which is another random vari- 
able) could be exploited (see, e.g., [7]). Keeping in mind that T(h) is monotonic 
decreasing, the probability density function (p.d.f.) of the packing scoresf(h) can 
be expressed in terms of the p.d.f, of the expected distances g(d) as 

g(T(h,p)) OT[ f (h)  = - ~  . (7) 
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Similarly, the cumulative probabili ty function (c.d.f.) o f  the packing scores F(h) is 
related to the c.d.f, o f  the expected distances G(d) as 

F(h) = 1 - G(T(h,p)) . (8) 

Both eq. (7) and eq. (8) specify an "ideal"  packing score distribution determined 
by the target  distribution of  the expected distances (fig. 1). The est imation o f  the 
pa ramete r  vec torp  in T(h,p) could then be carried out  by fitting the actual distribu- 
t ion of  the h U scores to this " ideal"  distribution using either the p.d.f. 's or  the 
c.d.f. 's. The nonlinear regression algori thm operated on the mappings eq. (7) or 
eq. (8) instead of  the transfer function T(h,p). The p.d.f, or c.d.f, o f  the expected 
distances was approximated by cubic splines to make  the mappings continuous.  
The parameter  estimation was carried out  by the s tandard G a u s s - N e w t o n - M a r -  

[ ~  f(h.p)=g(T(h.p)) IT'(h.p)i 
9 

regress ion  funct ion 

I nonlinear regression on p.d.f.-s 

t r ans form funct ion 

I nonlinear regression on c.d.f.-s 

I ~  ~ F(h,p)=l-G(T(h,p)) 

regress ion funct ion 

Fig. 1. Scheme of the transform function parameter estimation. The set of hydrophobic packing 
scores h/j is mapped to the set of expected distances d/j by the transform function d = T(h,p). The esti- 
mation of the parameters p is carried out either by fitting the observed p.d.f, f(h) to the ideal p.d.f. 
calculated from the p.d.f, of the expected distances g(d) (upper part of the diagram), or by fitting the 
corresponding c.d.f.'s (lower part of the diagram). The two procedures are mathematically equiva- 

lent. See text for details. 
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quardt nonlinear regression method [8,9]. The algorithm was started with several 
different sets of initial parameters to avoid local minima. The quality of the estima- 
tion was measured by the residual deviation, the estimated standard deviations of 
the parameters and their estimated correlation coefficients. 

2.3. THEORETICAL DISTANCE DISTRIBUTIONS 

2.3.1. Spherical approximation 
Protein molecules were approximated by spheres so that the volume of the sphere 

was the same as the expected volume of the molecule. This volume depends on the 
chain length only, since the residue density (the number of Ca atoms per unit vol- 
ume) p is approximately constant [10]. The expected radius of the sphere corre- 
sponding to the protein is 

= , (9) 

where N is the number of residues and p = 6.3 × 10 -3 A -~ [11]. 

2.3.2. The distance distribution within a sphere 
The probability of finding two points, A and B within a sphere of radius R which 

lie less than D distance apart can be broken down into two separate probabilities. 
Firstly, the probability of finding a point A which is closer to the centre O of the 
sphere than a is the ratio of the volume of the sphere with radius a to the volume of 
the encompassing sphere: 

a 3 
Pr(ra<~a) = FA(a) = ~-/, (10) 

and the density function of this distribution is 

dFA 3a 2 
fA(a)  = da - R 3 " (11) 

Secondly, the probability of finding another point B which is less than D distance 
apart from A is the ratio of the volume of the sphere with radius D (centered on A) 
to the volume of the large sphere. This reasoning, however, is valid only if 
a <~ R - D and the small sphere around A is completely contained by large sphere 
(Case I in fig. 2). In this case, we obtain (analogously to eqs. (10) and (11)): 

D 3 
Pr(DAB <~D,a<~ R - D) = FD,t(D) = ~--~, (12) 

fDJ(D)  dFDj _ 3D 2 (13) 
= dD R ~ 

For the partially overlapping case (Case II in fig. 2), when a > R - D, the volume 
of the small sphere within the large sphere is 
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B 

R A 

Fig. 2. The calculation of the distribution of distances within a uniform sphere of  radius R. For  a given 
distance D, first a point A is chosen whose distance from the origin is a. Then a second point B is 
picked, from a distance D away from A. The probability of this second event is proportional to the 
volume of the thick sphere on the right side ifa<~R - D (Case I). I f a > R  - D, then the probabili ty is 
proportional to the volume of the intersection of the small sphere with the large sphere (Case II, thick 

outline). See text for details. 

7r 4 VrI = ~ a  [a - 6a2(D 2 + R 2) + 8a(D 3 + R 3) - 3(R 2 - D2) 2] (14) 

[ 12], the corresponding probability is (cf. eq. (12)): 

Pr(DAI~<~D,a> R - D) = FD,II(D) - 3VII 
47rR 3 , 

which yields the density function by differentiating with respect to D: 

fhJr  (D) dFh,ii _ 3D 
- dD 4aR3 [(a - D) 2 - R2]. 

(15) 

(16) 

Since picking the points A and B are independent events, the joint probability den- 
sity function will be the product of the two separate density functions fA (a) and 
fD(D): 

f fA(a)fD,I(D) if a<~R - D ,  (17) 
f ( a , D )  = ( fA(a) fD,H(D)  if a > R - D ,  

from which the density function for D can be obtained by integration: 
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fo R-D fRRyA f (D)  = f4(a)fD,i(D) da + (a)fD,.(D) da 

9 [R-D 9 R 
='R6 Jo a2D2 d a - - ~  ~ - D D [ ( a -  D)2 - R2] da 

3D2 3 
= ~ ( D  - 12R2D + 16R3). (18) 

The density function is 0 outside the interval [0.. .  2R], it is unimodal but it is not 
symmetric around D = R (fig. 3). The first and second moments (cf. [6]) are 

~0 2R 36 D = Df(D) dD = -~R ,  (19) 

D 2 ---- D2f(D) dD = R a . (20) 

The cumulative distribution function can be obtained from eq. (18) by 
integration: 
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Distance Distribution in Spheres and Ellipsoids 
Unit sphere and average protein ellipsoid 
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Fig. 3. Distance distributions in spheres and ellipsoids. The probability density functions of  the dis- 
tance distribution within a unit sphere (solid line) and within an ellipsoid of  the same volume, axis 
ratios 1.00 : 0.75 : 0.60 (dashed line) are shown. The ellipsoid distribution has a distinct "tail" in the 
high distance region, indicating that an ellipsoid can accommodate longer distances than a sphere of  

equal volume. 
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( 9 
F ( d ) = d  3 1 -  d + ~  , 

where d is the normalised distance D/R. 

(21) 

2.3. 3. Ellipsoidal approximation 
A more accurate approximation of the molecular shape of proteins was achieved 

by fitting ellipsoids. Following [13], the ellipsoid was centred on the centroid of 
the molecule, its semiaxes collinear with the principal axes of inertia. The length of 
the semiaxes A, B and C were proportional to the three moments of inertia (the 
square root of the eigenvalues of the moment matrix). The semiaxes were then 
scaled by the same amount so that the resulting ellipsoid contained 90% of the point 
set. This scaling was performed to compensate for the concave crevices present on 
most protein surfaces. The semiaxis length ratios of the average ellipsoid calculated 
from an 84-protein dataset [14] area :B :  C = 1.00:0.75 : 0.60. 

The derivation of the density functionfD of the distribution of distances within 
an ellipsoid could be performed, at least in theory, similarly to that ofeq. (18), but 
the calculations are much more tedious. Instead, the distribution was approxi- 
mated by a simple Monte Carlo simulation. The ellipsoid in question was scaled so 
that its volume was set equal to that of a unit sphere (R = 1) and then random 
points were chosen within it, using a pseudo-random number generator [15]. The 
main qualitative difference between the density distributions within spheres and 
ellipsoids was that the ellipsoid distributions had distinct "tails" in the region of 
large distances (fig. 3) due to the fact that an ellipsoid can accommodate longer dis- 
tances than a sphere with the same volume. 

2.4. DATA COLLECTION 

2.4.1. a- Carbon distance statistics 
The distribution of Ca-C~ distances in folded polypeptides was approximated 

by processing a subset of monomeric protein structures which were well-resolved 
(better than 2.6 A), non-homologous (less than 25%) and the chain lengths fell 
between 100 and 200 residues. 35 proteins (Brookhaven codes 155C, 1ACX, 1CD4, 
1ECA, 1FD2, 1FKF, 1GCR, II1B, IlFB, 1L58, 1LH1, 1LZ1, 1MBA, 1MBD, 
1PAZ, 1RBP, 1RNH, 1YCC, 2CDV, 2FCR, 2RHE, 2RNT, 2SGA, 2SNS, 2SSI, 
2STV, 3DFR, 3FGF, 4BP2, 4CPV, 4FXN, 4TNC, 5P21, 7RSA, 8DFR) satisfied 
these criteria, giving a total of 349268 distances. Distances between Ca atoms of 
sequential neighbours were not included in the analysis (this distance is 3.8 A in all 
polypeptides). The c.d.f, of the distance distribution G(D) was approximated by a 
cubic spline fitted to the 100-bin cumulative histogram of the distance data. 

2.4.2. Multiple alignments 
Multiple alignments were constructed by the MULTAL program [2]. The 
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sequences of  a set o f  proteins with known structures were compared  to the rest o f  
the sequence database  and then aligned to the most  similar entries. The hydropho-  
bic packing scores were then calculated from each alignment (see section 2.1 .), see 
table 1. 

Table 1 

Protein Sequences Total length Average length Conservation 

1BP2 10 126 119.40 0.746 
1CCR 10 118 107.10 0.707 
1CTF 10 129 116.90 0.731 
1ECA 9 163 148.22 0.737 

1GCR 10 183 166.00 0.713 
1LZ1 10 148 139.70 0.768 
1MBA 5 147 145.20 0.937 
2AZA 10 185 141.20 0.598 

2MHR 5 118 115.00 0.813 
2PAB 6 147 138,17 0.857 
2RHE 10 142 112.10 0.569 
2RNT 10 113 104.30 0.761 

4CPV 10 111 109.00 0.815 
4FD1 6 113 102.00 0.713 
4FXN 8 146 140.62 0.656 
7RSA 10 158 129.60 0.676 

2.5. IMPLEMENTATION 

The multiple alignment program MULTAL [2] was writ ten by W.R.T.  in tradi- 
t ional C and run on a Silicon Graphics Challenge L server. The distance distribu- 
tion approximat ion  and nonlinear parameter  est imation programs were writ ten by  
A.A. in A N S I  C and run on a Silicon Graphics Indigo workstat ion.  The graphs 
were produced  by P.J. Turner 's ACE/gr freeware visualisation package (Version 
2.10). 

3. R e s u l t s  

3.1. TRANSFORM FUNCTION PARAMETER ESTIMATION 

3.1.1. Numerical properties 
While in strictly theoretical terms the use of  p.d.f. 's or c.d.f. 's for the est imation 

o f  t ransform function parameters  are equivalent, in practice the method  based on 
the fit o f  cumulative distribution functions proved superior to its counterpar t  that  
used probabi l i ty  density functions. The data  used in the est imation were inherently 
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noisy and this noise was amplified by the p.d.f.'s and "smoothed out" by the 
c.d.f.'s which was not totally unexpected, given that the p.d.f, of a distribution is 
the derivative of the corresponding c.d.f., and that differentiation enhances noise. 
While some carefully chosen weighting schemes can sometimes improve the quality 
of the estimation, in our case it would have been difficult to compensate for the 
amplification of noise inherent in the p.d.f, transformation. Consequently, the 
results presented in this study were generated by fitting c.d.f.'s with uniform 
weights. 

The choice of the transform function T also influenced the estimation. The func- 
tion Totd (eq. (5)) was used in previous studies [6], but some of its numerical proper- 
ties were undesirable. Not  only had it a discontinuity at h---0 which was 
inconvenient since the hydrophobic packing scores could very well be zero, but also 
its rate of change in the range of small h - s was very high, which led to a noise 
amplification phenomenon similar to the effect of derivation outlined above. The 
alternative transform function Tnew defined by eq. (6), on the other hand, was 
defined for all non-negative h values and changed more smoothly in the range of 
interest except for an initial sharp drop when h << 1. In general, Totd did not give 
satisfactory results in preliminary trials, therefore Tnew was used instead. 

3.1.2. Numerical results 
The c.d.f, of the distribution ofhydrophobic packing scores pooled from 16 mul- 

tiple alignments was fitted to the c.d.f, of three different distributions: 

1. the distribution of distances within a sphere (eq. (21)) that had a radius 
Rexp = 16.89 A calculated from the average sequence length (eq. (9)); 

2. the distribution of distances within an ellipsoid that had the same volume as 
the sphere above and the ratio of its semiaxes were 1.00 : 0.75 : 0.60 (the aver- 
age protein ellipsoid); 

3. the observed distribution of a-carbon distances in 35 non-homologous proteins 
with chain lengths between 100 and 200 residues. 

For all three cases, the observed and calculated p.d.f.'s were obtained from the 
corresponding c.d.f.'s by numerical derivation to facilitate comparison (fig. 4). 
The estimated values of the parameters and their standard deviations as well as the 
residual deviations are given in table 2. 

Table 2 

Parameter Sphere Ellipsoid Observed a-carbon 

Pl 19.3~0.6 31.9±0.9 30.3~0.9 
P2 0.339±0.008 0.220±0.006 0.2~ ±0.~6 
P3 37.4±0.6 50.2~0.9 50.5±0.8 

Resid~l 0.011 0.015 0.004 
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Fig. 4. Transform function parameter estimation by fitting distance distributions. The expected dis- 
tances were characterised by spherical (a, b), ellipsoidal (c, d) and experimental a-carbon distance (e, 
f) distributions, respectively (solid lines). The fitted distributions (dashed lines) were calculated using 
the transform function with the estimated parameters. The p.d.f.'s (b, d, f) are much "noisier" than 
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The best fit was obtained with the distribution of the "real" a-carbon distances. 
The spherical and ellipsoidal distributions gave less satisfactory results as judged 
from the graphs and the residual deviation values. The parameters estimated from 
the ellipsoidal distribution were much closer to the values obtained from the fit to 
the observed a-carbon distance distribution than to the spherical approximation 
data. The graphs of the transform functions (fig. 5) were similar in all cases, sug- 
gesting that the transformation was not particularly sensitive to variation in the 
parameters. The length of the alignment was more important for the quality of the 
estimation than the number of sequences in the alignment. 

3.2. APPLICATION TO MODELLING 

We have developed a distance geometry-based algorithm, DRAGON that folds 
up model polypeptide chains into compact globules with distinct hydrophobic 
cores [ 11 ]. The interresidue distance estimation technique described above was built 
into this program and 25 model structures for the protein 4CPV were generated, 
using a multiple alignment of 10 homologous sequences. The pooled interresidue 
distance distribution for the models matched that of the native 4CPV structure 
(fig. 6(a)), indicating that the estimation provided a reliable guidance to the model- 
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Fig. 5. The transform functions estimated from the spherical (dotted line), ellipsoidal (dashed line) 
and experimental a-carbon (solid line) distance distributions. The graphs are very similar, indicating 

that the method was not particularly sensitive to the choice of the ideal distribution. 
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Fig. 6. Application of the distance prediction method to structural modeling. 25 models of carp par- 
valbumin (4CPV) were generated by the program DRAGON. (a) Distance distribution. The p.d.f, of 
interresidue distances in carp parvalbumin (solid line) is matched by the pooled p.d.f, of distances 
from the model structures (dashed line). (b) Correlation of residue burial. The relative shieldedness of 
the residues in carp parvalbumin (solid line) is approximately matched by the average shieldedness 

values from the 25 model structures (dashed line). 
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ling program. The solvent accessibility of each residue (approximated by the 
"cone" algorithm, [11]) in the models was also averaged and compared to that of 
the corresponding residue in the native structure (fig. 6(b)). The average model 
accessibilities reproduced the native accessibilities fairly well (correlation coeffi- 
cient R = 0.51), indicating that the method was capable of predicting the "core 
membership" of the individual amino acids. 

4. Discussion 

4.1. DISTANCE DISTRIBUTIONS 

The interresidue distance distribution in protein molecules is determined by the 
packing of main and side chains within the protein interior. A detailed model of 
packing of amino acids should take the following factors into account: 

1. The residues in the polypeptide chain have finite volumes and are practically 
impenetrable. This excluded volume effect means that two atoms cannot ap- 
proach each other any closer than a well-defined lower limit (the sum of their 
van der Waals radii). 

2. The volumes of the various amino acid side chains are different. 

3. The molecular shapes of the amino acid residues are rather complex and a sphe- 
rical approximation is not always justifiable. 

4. The shape of globular proteins could better be approximated by an ellipsoid 
than by a sphere. 

The theoretical distribution of distances within a uniform sphere given by 
eq. (18) was very simple to evaluate and could serve as a quick approximation. For 
the sake of simplicity, however, the details of packing outlined above were ignored 
in the derivation. More accurate descriptions of the packing of identical impene- 
trable spheres, both theoretical [16,17] as well as experimental [18] are able to 
reproduce the peaks of the distribution at short distances corresponding to local 
order in the arrangement. While these investigations represent an important contri- 
bution towards the understanding of the structure of dense molecular aggregates, 
the application of results to protein molecules is by no means straightforward. 

The p.d.f, of the protein ct-carbon distance distribution showed several interest- 
ing features. The overall shape of the curve was similar to the p.d.f, of the ellipsoid 
distance distribution, indicating that the ellipsoidal approximation was more accu- 
rate than the spherical method. The most conspicuous features were the distinct 
peaks at 5.5 and 11.0 A which corresponded to the first and second "coordination 
spheres" around the amino acids. These peaks were not present in the theoretical 
distance distributions where uniform density was assumed, suggesting that these 
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approximations are valid only if global molecular properties are analysed. The 
most reliable approach, therefore, seems to be to use the a-carbon distance distribu- 
tion obtained from a nonhomologous subset of PDB entries whose chain lengths 
roughly correspond to the length of the chains in the prediction. 

4.2. INTERRESIDUE DISTANCE PREDICTION 

The method of estimating a-carbon distances from conserved hydrophobicity 
scores was originally applied by Taylor [4,6] to build structural models of proteins 
from multiple sequence alignments. While the underlying idea remains the same, 
in the present study we attempted to give the method a solid theoretical basis. 
Rather than scaling the hydrophobic scores so that the first two moments of the dis- 
tribution of the predicted distances matched those of the observed distribution, 
the fit between two distributions was carried out. The main advantage of this new 
approach is that it retained the information which would otherwise have been dis- 
carded by the calculation of moments only. The procedure enabled the systematic 
assessment of transform functions on a quantitative basis. 

4.2.1. Numerical properties 
The method described in the present study proved to be reasonably robust. 

Firstly, the c.d.f.'s used in the transform acted as smoothing f'dters which reduced 
noise to a considerable extent as opposed to the p.d.f.-based approach which was 
much more sensitive to noise. Secondly, the distributions were calculated from 
pairwise distance data and packing scores obtained from alignments. From an 
alignment that contained N positions, N ( N  - 1)/2 pairwise packing scores could 
be calculated, providing a large amount of raw data for the estimation of distribu- 
tions. The quality of the parameter estimation did not depend heavily on the num- 
ber of sequences in the alignment for the same reason: when the packing scores 
were calculated from subalignments of M / 2  sequences taken from an alignment of 
M sequences, the residual deviation did not change dramatically. 

4.2.2. Limitations 
Perhaps the most important limitation of the present scheme is that in general 

it is impossible to predict all individual interresidue distances. Although the distri- 
bution of expected distances could accurately be reproduced, the actual distance 
between an arbitrary pair of residues in a particular protein depends on many other 
stereochemical factors. Even if we know that residue X always favours the com- 
pany of residue Y, and therefore the expected X-Y distance is small, there might be 
other, unrelated Y's far away in another region of the protein whose distances 
from X are essentially random and cannot be reliably predicted by any scheme. 

4.2. 3. Applications 
The method for fitting distributions of random variables which are functions of 
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each other  is fairly general and therefore can easily be applied to a wide variety of  
predict ion schemes. In particular, the approach described above can readily be 
applied in distance-based protein structure prediction methods.  By reproducing the 
observed a-carbon distance distribution, an appropriate scaling of  est imated dis- 
tances can be achieved. In our example calculations, even the "core  membersh ip"  
of  the amino acids in 4CPV was predicted at a reasonable accuracy. Of  course the 
native structure of  4CPV could not  be reproduced f rom the predicted distances 
alone, but  the method  helped the distance geometry algori thm to make  educated 
guesses about  unknown distances and build a realistic hydrophobic  core. These 
results indicate that  our  prediction scheme can play a useful role in protein model-  
ling applications. 
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